(Sep. 2017 – March. 2019)

Objective: To obtain a full-time position in robotics. Specific interests include mechatronics, artificial intelligence, and controls.

Technical Skills

- ROS, Python, C/C++, Rviz, Gazebo, Linux, Git, GitHub
- Biomedical Instrumentation, Circuit Design, Soldering
- Programming ARM & PIC type microcontrollers

- MATLAB & Simulink, CAD SolidWorks, Onshape
- PCB design with Autodesk Eagle
- **Digital Signal Processing & Controls**

Education

Northwestern University – Evanston, IL	
Major: M.S. in Robotics (2017 – 2018)	GPA: 3.89/4.00
Focus: Mechatronics, ROS, AI, Embedded Systems, Controls, Computer Vision, Machine Learning, Autonomous Systems	
Milwaukee School of Engineering - Milwaukee, WI	
Major: B.S. in Biomedical Engineering (2013 - 2017)	GPA: 3.95/4.00

- Dean's List (High Honors) for all four years
- Merit scholarship, diversity scholarship, and Presidential Achievement Award recipient
- Founder and president of the Jewish Association of MSOE (JAM) (2014 2017)
- Corresponding Secretary of Tau Beta Pi Engineering Honor Society (2016-2017)
- Tau Beta Pi Most Improved Chapter Award (2017)
- Designee for "Who's Who Among Students in American Universities & Colleges" (2016)

Projects

Check out my portfolio for more details - swiz23.github.io/Portfolio

Robotics

- Path Planning Coded a program to plan the optimal paths for multiple robots in a 10x10 meter grid while avoiding collisions; used ROS, C++, Rviz, the A* algorithm, and Linux
- Image Flipper Created a neural network from scratch to look through a directory of images and rotate them if they are not properly oriented; used Python, deep learning, and Linux
- Omni Project Designed and built three omnidirectional, mecanum-wheeled robot platforms; used PID control, ROS, Python, C/C++, kinematics, Intel NUC, Wifi, Bluetooth, TM4C123GXL LaunchPad Tiva C MCU, PCB design, Linux, SolidWorks, Soldering, Crimping
- Inverted Pendulum Programmed a seven-degree-of-freedom robotic arm to balance a wooden dowel; used LQR control, ROS, Python, rigid-body motion, forward and inverse kinematics, Jacobians, Euler-Lagrange Equations, Mathematica, Bluetooth, Onshape, Microduino
- Mechatronics Implemented a motion control system to make a brushed, DC motor follow reference trajectories; used C, MATLAB, the PIC32MX795F512H microcontroller, H-bridge, encoder, and current sensing chip
- Robotic Manipulation Simulated a wheeled mobile robot's movement as it travels along a specified path; used rigid-body motion, forward and inverse kinematics, Jacobians, and feedback control with the V-REP simulator
- Plinko Game Modeled a square prism navigating a Plinko board; used Lagrangian Dynamics, impact constraints, external forces, constrained dynamics, and Mathematica
- **Computer Vision** Designed a "finger sniper" game that tracks two fingertips and performs gesture detection; used Python, OpenCV, color segmentation and morphological operations

Automatic Hand Support System – GE Healthcare

Led design team in collaboration with GE Healthcare to build a hand support system for the Ultrasound Robotic Hand Scanner to help rheumatoid arthritis patients; 3D modeled the supporter with SolidWorks and controlled it with MATLAB, motors, and accelerometers

CT Scan Analysis

Created a MATLAB script that loads CT scan images, sorts and rescales them, performs windowing, and generates videos of the anatomy in the axial, sagittal, and coronal planes; used medical image processing

Brainwave Analysis

- Wrote MATLAB code to analyze Event Related Potential (ERP) signals from an awake and unconscious rat using digital signal processing •
- Represented EEG data in the frequency domain and analyzed the relationship between sampling frequency and aliasing

Electrocardiogram Amplifier Design

Built and tested an ECG amplifier containing operational and isolation amplifiers, and high/low pass filters to fit set constraints; used resistors, capacitors, DC and AC voltage sources, an oscilloscope, and a multimeter

Work Experience

Anixter | Glenview, IL – Associate Engineering Intern

- Lab-tested Cat-6 and Cat-5 cables for quality standards using a network analyzer
- Evaluated various video management security systems for ease of use, design, and camera integration

Milwaukee School of Engineering | Milwaukee, WI - Student Technician

- Offered technical support like soldering circuits, calibrating oscilloscopes/multimeters, and fixing electronic equipment Milwaukee School of Engineering | Milwaukee, WI - Student Tutor (Sep. 2016 - Feb. 2017)
 - Tutored Calculus, Physiology, and Circuit subjects at the Raider Center for Academic Success

(June 2017 - Aug. 2017)

(Sep. 2016 – May 2017)

(Jan. 2017 - Feb. 2017)

(Sep. 2016 - Nov. 2016)

(Sep. 2016 - Oct. 2016)

- (June 2016 May 2017)